About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Simplified Model for Reburning Chemistry

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

In solid fuel flames, reburn-type reactions are often important for the concentrations of NOx in the near-burner region. To be able to model the nitrogen chemistry in these flames, it is necessary to have an adequate model for volatile/NO interactions. Simple models consisting of global steps or based on partial-equilibrium assumptions have limited predictive capabilities.

Reburning models based on systematic reduction of a detailed chemical kinetic model offer a high accuracy but rely on input estimates of combustion intermediates, including free radicals. In the present work, an analytically reduced nitrogen scheme is combined with simplified correlations for estimation of O/H and hydrocarbon radicals.

Correlations are derived for volatile compositions representative of solid fuels ranging from bituminous coal to biomass, for temperatures of 1200−2000 K and excess air ratios in the range of 0.6 ≤ λ ≤ 2.0. The combined model is tested against reference calculations with a comprehensive mechanism. The results indicate that the approximations in the simplified hydrocarbon radical scheme are satisfactory.

However, when this scheme is combined with the semi-empirical correlations for the O/H radicals, the modeling predictions for the radicals become less accurate. Despite these deviations, the combined model provides a satisfactory prediction of NO under reburning conditions over the range of fuels, temperatures, and stoichiometries tested.

Language: English
Publisher: American Chemical Society (ACS)
Year: 2010
Pages: 4185-4192
ISSN: 15205029 and 08870624
Types: Journal article
DOI: 10.1021/ef100469h
ORCIDs: Glarborg, Peter
Keywords

Chemistry Reburning

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis