About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Stability and leaching of cobalt smelter fly ash

From

Charles University1

DHI Water - Environment - Health2

Department of Environmental Engineering, Technical University of Denmark3

Residual Resource Engineering, Department of Environmental Engineering, Technical University of Denmark4

The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48h and 168h) were evaluated. The leaching results were combined with the ORCHESTRA modelling framework and a detailed mineralogical investigation was performed on the original FA and leached solid residues.

The largest amounts of Co, Cu, Pb and Zn were leached at pH 5, generally with the lowest concentrations between pH 9 and 11 and slightly increased concentrations at pH 12. For most elements, the released concentrations were very similar after 48h and 168h, indicating near-equilibrium conditions in the system.

Calcite, clinopyroxenes, quartz and amorphous phases predominated in the fly ash. Various metallic sulfides, alloys and the presence of Cu, Co and Zn in silicates and glass were detected using SEM/EDS and/or TEM/EDS. The leaching of metals was mainly attributed to the dissolution of metallic particles.

Partial dissolution of silicate and glass fractions was assumed to significantly influence the release of Ca, Mg, Fe, K, Al and Si as well as Cu, Co and Zn. The formation of illite was suggested by the ORCHESTRA modelling to be one of the main solubility-controlling phases for major elements, whereas Co and Zn were controlled by CoO and zincite, respectively.

Sorption of metals on hydrous ferric oxides was assumed to be an important attenuation mechanism, especially for the release of Pb and Cu. However, there is a high risk of Co, Cu, Pb and Zn mobility in the acidic soils around the smelter facility. Therefore, potential local options for “stabilisation” of the fly ash were evaluated on the basis of the modelling results using the PHREEQC code.

Language: English
Year: 2013
Pages: 117-125
ISSN: 18729134 and 08832927
Types: Journal article
DOI: 10.1016/j.apgeochem.2012.11.003
ORCIDs: Astrup, Thomas Fruergaard

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis