About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Induction of toxin production in dinoflagellates: the grazer makes a difference

From

Department of Marine Ecology, Göteborg University, Tjärnö Marine Biological Laboratory, 452 96 Strömstad, Sweden.1

The dinoflagellate Alexandrium minutum has previously been shown to produce paralytic shellfish toxins (PST) in response to waterborne cues from the copepod Acartia tonsa. In order to investigate if grazer-induced toxin production is a general or grazer-specific response of A. minutum to calanoid copepods, we exposed two strains of A. minutum to waterborne cues from three other species of calanoid copepods, Acartia clausi, Centropages typicus and Pseudocalanus sp.

Both A. minutum strains responded to waterborne cues from Centropages and Acartia with significantly increased cell-specific toxicity. Waterborne cues from Centropages caused the strongest response in the A. minutum cells, with 5 to >20 times higher toxin concentrations compared to controls. In contrast, neither of the A. minutum strains responded with significantly increased toxicity to waterborne cues from Pseudocalanus.

The absolute increase in PST content was proportional to the intrinsic toxicity of the different A. minutum strains that were used. The results show that grazer-induced PST production is a grazer-specific response in A. minutum, and its potential ecological importance will thus depend on the composition of the zooplankton community, as well as the intrinsic toxin-producing properties of the A. minutum population.

Language: English
Publisher: Springer-Verlag
Year: 2008
Pages: 147-154
ISSN: 14321939 and 00298549
Types: Journal article
DOI: 10.1007/s00442-008-0981-6

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis