About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis

In Water Research 2017, Volume 124, pp. 363-371
From

The University of Tokyo1

National Institute of Advanced Industrial Science and Technology2

University of Tokushima3

Department of Environmental Engineering, Technical University of Denmark4

Water Technologies, Department of Environmental Engineering, Technical University of Denmark5

The goal of this study was to investigate the effectiveness of a membrane-aerated biofilm reactor (MABR), a representative of counter-current substrate diffusion geometry, in mitigating nitrous oxide (N2O) emission. Two laboratory-scale reactors with the same dimensions but distinct biofilm geometries, i.e., a MABR and a conventional biofilm reactor (CBR) employing co-current substrate diffusion geometry, were operated to determine depth profiles of dissolved oxygen (DO), nitrous oxide (N2O), functional gene abundance and microbial community structure.

Surficial nitrogen removal rate was slightly higher in the MABR (11.0 ± 0.80 g-N/(m2 day) than in the CBR (9.71 ± 0.94 g-N/(m2 day), while total organic carbon removal efficiencies were comparable (96.9 ± 1.0% for MABR and 98.0 ± 0.8% for CBR). In stark contrast, the dissolved N2O concentration in the MABR was two orders of magnitude lower (0.011 ± 0.001 mg N2O-N/L) than that in the CBR (1.38 ± 0.25 mg N2O-N/L), resulting in distinct N2O emission factors (0.0058 ± 0.0005% in the MABR vs. 0.72 ± 0.13% in the CBR).

Analysis on local net N2O production and consumption rates unveiled that zones for N2O production and consumption were adjacent in the MABR biofilm. Real-time quantitative PCR indicated higher abundance of denitrifying genes, especially nitrous oxide reductase (nosZ) genes, in the MABR versus the CBR.

Analyses of the microbial community composition via 16S rRNA gene amplicon sequencing revealed the abundant presence of the genera Thauera (31.2 ± 11%), Rhizobium (10.9 ± 6.6%), Stenotrophomonas (6.8 ± 2.7%), Sphingobacteria (3.2 ± 1.1%) and Brevundimonas (2.5 ± 1.0%) as potential N2O-reducing bacteria in the MABR.

Language: English
Year: 2017
Pages: 363-371
ISSN: 18792448 and 00431354
Types: Journal article
DOI: 10.1016/j.watres.2017.07.058
ORCIDs: 0000-0002-9258-6912 and Smets, Barth F.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis