About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Electrochemical investigation of nickel pattern electrodes in H2/H2O and CO/CO2 atmospheres

From

Lund Institute of Technology1

Electroceramics, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

Solar Energy Programme, Risø National Laboratory for Sustainable Energy, Technical University of Denmark5

Chalmers University of Technology6

Electrochemistry, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark7

In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H2 / H2 O and CO/ CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance.

Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode.

It was possible to compare literature results with high temperature impedance measurements in H2 / H2 O presented here, while new results at lower temperatures in H2 / H2 O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres.

A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes. © 2010 The Electrochemical Society.

Language: English
Year: 2010
Pages: B1588
ISSN: 19457111 and 00134651
Types: Journal article
DOI: 10.1149/1.3484091
ORCIDs: Norrman, Kion and Mogensen, Mogens Bjerg

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis