About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Detection of wakes in the inflow of turbines using nacelle lidars

From

Department of Wind Energy, Technical University of Denmark1

Meteorology & Remote Sensing, Department of Wind Energy, Technical University of Denmark2

Nacelle-mounted lidar systems offer the possibility of remotely sensing the inflow of wind turbines. Due to the limitation of line-of-sight measurements and the limited number of focus positions, assumptions are necessary to derive useful inflow characteristics. Typically, horizontally homogeneous inflow is assumed which is well satisfied in flat, homogeneous terrain and over sufficiently large time averages.

However, it is violated if a wake impinges the field of view of one of the beams. In such situations, the turbine yaw misalignment measurements show large biases which require the detection and correction of these observations. Here, a detection algorithm is proposed based on the spectral broadening of the Doppler spectrum due to turbulence within the probe volume.

The small-scale turbulence generated within wake flows will typically lead to a significantly larger broadening than in the ambient flow. Thus, by comparing the spectral widths at several measurement locations, situations where a wake is impinging one or more measurement locations can be identified.

The correction method is based on an empirical relationship between the difference in turbulence levels at distinct beams and the difference in wind direction derived from the lidar and the real wind direction. The performance of the algorithm is evaluated in a field experiment identifying all wake situations and, thus, correcting the lidar derived wind direction.

Language: English
Publisher: Copernicus Publications
Year: 2019
Pages: 407-420
ISSN: 23667451 and 23667443
Types: Journal article
DOI: 10.5194/wes-4-407-2019
ORCIDs: Mann, Jakob and 0000-0003-3018-0412

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis