About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

From

University of Tehran1

Shahid Chamran University of Ahvaz2

Center for Electron Nanoscopy, Technical University of Denmark3

A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms.

The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity.

The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation.

The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

Language: English
Publisher: Springer US
Year: 2017
Pages: 3675-3691
ISSN: 15431940 and 10735623
Types: Journal article
DOI: 10.1007/s11661-017-4122-x
ORCIDs: Alimadadi, Hossein and Burrows, Andrew

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis