About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage of NAD(P)(+).

After the addition of cofactors and substrates, activities of cytosolic as well as mitochondrial respiratory enzymes could be directly determined inside the permeabilized cells. However, at an AlaM concentration at which the cytoplasmic enzymes were maximally accessible, the vacuole remained intact, as indicated by an unaffected tonoplast proton gradient.

Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes the H2O2 necessary for NADH oxidation by apoplastic peroxidases, mitochondrial oxygen consumption could be measured in permeabilized cells.

Inhibitor-sensitive oxidation of the respiratory substrates succinate, malate and NADH was observed after the addition of the appropriate coenzymes (ATP, NAD(+)). The capacities of different pathways in the respiratory electron-transport chain could thus be determined directly. We conclude that AlaM permeabilization provides a very useful tool for monitoring metabolic pathways or individual enzymes in their native proteinaccous environment with controlled cofactor concentrations.

Possible uses and limitations of this method for plant cell research are discussed.

Language: English
Publisher: Portland Press Ltd.
Year: 2005
Pages: 695-704
ISSN: 14708728 and 02646021
Types: Journal article
DOI: 10.1042/BJ20050433
Keywords

8-B gen

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis