About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Wood pellet milling tests in a suspension-fired power plant

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

HOFOR A/S3

This paper investigates the milling behavior of two industrial wood pellet qualities (designated I1 and I2 as per ISO 17225-2:2014) in large-scale coal roller mills, each equipped with a dynamic classifier. The purpose of the study was to test if pellet comminution and subsequent particle classification (i.e., the classifier cut size) are affected by the internal pellet particle size distribution obtained after pellet disintegration in hot water.

Furthermore, optimal conditions for comminuting pellets were identified. The milling behavior was assessed by determining the specific grinding energy consumption and the differential mill pressure. The size and shape of comminuted pellets sampled from burner pipes were analyzed by dynamic image analysis and sieve analysis, respectively.

The results showed that the internal pellet particle size distribution affected both the milling behavior and the classifier cut size. I2 pellets with coarser internal particles than I1 pellets required more energy for milling, led to a higher mill pressure drop and showed a larger classifier cut size.

Comminuted pellet particles sampled from burner pipes were notably finer than internal pellet (feed) particles. At similar mill-classifier conditions, characteristic particle sizes of 0.50 mm for comminuted I1 pellets (compared to 0.83 mm for material within I1 pellets) and of 0.56 mm for comminuted I2 pellets (compared to 1.09 mm for material within I2 pellets), respectively, were obtained.

Pellet comminution at lower mill loads and lower primary airflow rates reduced the mill power consumption, the mill pressure drop, and the classifier cut size. However, this was at the expense of a higher specific grinding energy consumption. Derived 2D shape parameters for comminuted and internal pellet particles were similar.

Mill operating changes had a negligible effect on the original elongated wood particle shape. To achieve the desired comminuted product fineness (i.e., the classifier cut size) with lower specific grinding energy consumption, power plant operators need to choose pellets with a finer internal particle size distribution.

Language: English
Year: 2018
Pages: 89-102
ISSN: 18737188 and 03783820
Types: Journal article
DOI: 10.1016/j.fuproc.2018.01.009
ORCIDs: Ahrenfeldt, Jesper , Masche, Marvin , Puig-Arnavat, Maria , Clausen, Sønnik , Jensen, Peter A. and Henriksen, Ulrik B.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis