About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Performance and stability of (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-LaCr0.85Cu0.10Ni0.05O3-δ oxygen transport membranes under conditions relevant for oxy-fuel combustion

From

Department of Energy Conversion and Storage, Technical University of Denmark1

Mixed Conductors, Department of Energy Conversion and Storage, Technical University of Denmark2

Imperial College London3

Korea Institute of Energy Research4

Ceramic Engineering & Science, Department of Energy Conversion and Storage, Technical University of Denmark5

Self-standing, planar dual-phase oxygen transport membranes consisting of 70 vol.% (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10 (10Sc1YSZ) and 30 vol.% LaCr0.85Cu0.10Ni0.05O3-δ (LCCN) were successfully developed and tested. The stability of the composite membrane was studied in simulated oxy-fuel power plant flue-gas conditions (CO2, SO2, H2O).

The analyses of the exposed composites by X-ray diffraction (XRD), X-ray fluorescence (XRF), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy revealed an excellent stability. Oxygen permeation fluxes were measured across 1000 μm thick and 110 μm thick self-supported 10Sc1YSZ-LCCN (70-30 vol.%) membranes from 700 °C to 950 °C using air as the feed gas and N2 or CO2 as the sweep gas.

The 110 μm thick membrane, prepared by tape-casting and lamination processes, showed oxygen fluxes up to 1.02 mLN cm-2 min-1 (950 °C, air/N2). Both membranes demonstrated stable performances over long-term stability tests (250-300 h) performed at 850 °C using pure CO2 as the sweep gas.

Language: English
Publisher: Elsevier BV
Year: 2018
Pages: 115-123
ISSN: 18733123 and 03767388
Types: Journal article
DOI: 10.1016/j.memsci.2018.01.067
ORCIDs: Pirou, Stéven , Ovtar, Simona , Hendriksen, Peter Vang , Kaiser, Andreas and Kiebach, Ragnar

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis