About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Influence of extensional stress overshoot on crystallization of LDPE

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

The Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

University of Copenhagen3

University of Nottingham4

Low-density polyethylene (LDPE) shows a stress overshoot in start-up of strong uniaxial extensional flows of constant rate. It is believed that the overshoot is caused by a contraction of the polymer backbone due to alignment of the long chain branchesthe consequence being that the molecular strain of the backbone does not increase monotonically with the global strain of the melt.

In this study we investigate the semicrystalline morphology of LDPE quenched before, after, and at the overshoot. We do this by combining filament stretching rheometry with ex-situ X-ray scattering. It is found that the overshoot indeed is reflected in the orientation of the crystalline domains of the quenched filaments.

In a broader perspective, we show that the final crystalline morphology is determined by the stress at quenchnot the strain at quench. With these findings we confirm that the much debated overshoot has a physical origin. More importantly, we conclude that even for complex architectures like branched systems, the crystalline orientation is determined by the backbone stretch rather than the global stretch of the material.

Language: English
Publisher: American Chemical Society (ACS)
Year: 2017
Pages: 1134-1140
ISSN: 15205835 and 00249297
Types: Journal article
DOI: 10.1021/acs.macromol.6b02543
ORCIDs: Wingstrand, Sara Lindeblad , 0000-0002-8998-9390 , Huang, Qian , Hassager, Ole and van Drongelen, Martin

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis