About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Constant force extensional rheometry of polymer solutions

From

The Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Massachusetts Institute of Technology3

Stichting Katholieke Universiteit4

We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution is first established between two cylindrical disks.

The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified.

This unique characteristic of the experiment is analyzed numerically using the FENE-P model and two alternative kinematic descriptions; employing either an axially-uniform filament approximation or a quasi two-dimensional Lagrangian description of the elongating thread. In addition, a second order pertubation theory for the trajectory of the falling mass is developed for simple viscous filaments.

Based on these theoretical considerations we develop an expression that enables estimation of the finite extensibility parameter characterizing the polymer solution in terms of quantities that can be extracted directly from simple measurement of the time-dependent filament diameter.

Language: English
Year: 2012
Pages: 26-41
ISSN: 18732631 and 03770257
Types: Journal article
DOI: 10.1016/j.jnnfm.2011.11.003
ORCIDs: Szabo, Peter

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis