About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

3D CFD computations of trasitional flows using DES and a correlation based transition model

From

Aeroelastic Design, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over a circular cylinder from Re = 10 to 1 × 106 reproducing the cylinder drag crisis.

The computations show good quantitative and qualitative agreement with the behaviour seen in experiments. This case shows that the methodology performs smoothly from the laminar cases at low Re to the turbulent cases at high Re. Secondly, the flow is computed over a thick airfoil at high angle of attack, in this case the DU-96-W351 is considered.

These computations show that a transition model is needed to obtain correct drag predictions at low angle of attack, and that the combination of transition and the DES method improve agreement in the deep stall region. Copyright © 2010 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd.
Year: 2011
Pages: 77-90
ISSN: 10991824 and 10954244
Types: Journal article
DOI: 10.1002/we.404
ORCIDs: Sørensen, Niels N. , Bechmann, Andreas and Zahle, Frederik

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis