About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Laccase activity measurement by FTIR spectral fingerprinting

From

Department of Biotechnology and Biomedicine, Technical University of Denmark1

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark2

Enzyme Technology, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark3

Department of Applied Mathematics and Computer Science, Technical University of Denmark4

Statistics and Data Analysis, Department of Applied Mathematics and Computer Science, Technical University of Denmark5

University of Copenhagen6

Laccases (EC 1.10.3.2) are enzymes known for their ability to catalyze the oxidation of phenolic compounds using molecular oxygen as the final electron acceptor. Laccase activity is commonly determined by monitoring spectrophotometric changes (absorbance) of the product or substrate during the enzymatic reaction.

Fourier Transform Infrared Spectroscopy (FTIR) is a fast and versatile technique where spectral evolution profiling, i.e. assessment of the spectral changes of both substrate and products during enzymatic conversion in real time, can be used to assess enzymatic activity when combined with multivariate data analysis.

We employed FTIR to monitor enzymatic oxidation of monolignols (sinapyl, coniferyl and p-coumaryl alcohol), sinapic acid, and sinapic aldehyde by four different laccases: three fungal laccases from Trametes versicolor, Trametes villosa and Ganoderma lucidum, respectively, and one bacterial laccase from Meiothermus ruber.

By coupling the FTIR measurements with Parallel Factor Analysis (PARAFAC) we established a quantitative assay for assessing laccase activity. By combining PARAFAC modelling with Principal Component Analysis we show the usefulness of this technology as a multivariate tool able to compare and distinguish different laccase reaction patterns.

We also demonstrate how the FTIR approach can be used to create a reference system for laccase activity comparison based on a relatively low number of measurements. Such a reference system has potential to function as a high-throughput method for comparing reaction pattern similarities and differences between laccases and hereby identify new and interesting enzyme candidates in large sampling pools.

Language: English
Year: 2019
Pages: 64-73
ISSN: 18790909 and 01410229
Types: Journal article
DOI: 10.1016/j.enzmictec.2018.12.009
ORCIDs: Baum, Andreas , Meyer, Anne S. , Perna, Valentina and Agger, Jane W.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis