About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling

From

Department of Micro- and Nanotechnology, Technical University of Denmark1

Nanointegration, Department of Micro- and Nanotechnology, Technical University of Denmark2

Nanointegration Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark3

NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark4

DTU Danchip, Technical University of Denmark5

Nano- and microelectromechanical structures for in situ operation in a transmission electron microscope (TEM) were fabricated with a turnaround time of 20 min and a resolution better than 100 nm. The structures are defined by focused ion beam (FIB) milling in 135 nm thin membranes of single crystalline silicon extending over the edge of a pre-fabricated silicon microchip.

Four-terminal resistance measurements of FIB-defined nanowires showed at least two orders of magnitude increase in resistivity compared to bulk. We show that the initial high resistance is due to amorphization of silicon, and that current annealing recrystallizes the structure, causing the electrical properties to partly recover to the pristine bulk resistivity.

In situ imaging of the annealing process revealed both continuous and abrupt changes in the crystal structure, accompanied by instant changes of the electrical conductivity. The membrane structures provide a simple way to design electron-transparent nanodevices with high local temperature gradients within the field of view of the TEM, allowing detailed studies of surface diffusion processes.

We show two examples of heat-induced coarsening of gold on a narrow freestanding bridge, where local temperature gradients are controlled via the electrical current paths. The separation of device processing into a one-time batch-level fabrication of identical, generic membrane templates, and subsequent device-specific customization by FIB milling, provides unparalleled freedom in device layout combined with very short effective fabrication time.

This approach significantly speeds up prototyping of nanodevices such as resonators, actuators, sensors and scanning probes with state-of-art resolution.

Language: English
Year: 2010
Pages: 405304
ISSN: 13616528 and 09574484
Types: Journal article
DOI: 10.1088/0957-4484/21/40/405304
ORCIDs: Lei, Anders , Petersen, Dirch Hjorth , Booth, Tim , Mølhave, Kristian and Bøggild, Peter

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis