About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion : Optimization of rotors using a corrected BEM method

From

Aeroelastic Design, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now be obtained in the blade root and tip sections.

It is expected that this will lead to small changes in optimum blade designs. In this work, has been implemented, and the spanwise load distribution has been optimized to find the highest possible power production. For comparison, optimizations have been carried out using BEM as well. Validation of shows good agreement with the flow calculated using an advanced actuator disk method.

The maximum power was found at a tip speed ratio of 7 using , and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios.

It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM. In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd
Year: 2012
Pages: 563-574
ISSN: 10954244 and 10991824
Types: Journal article
DOI: 10.1002/we.487
ORCIDs: Aagaard Madsen, Helge and Bak, Christian

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis