About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Immobilization of Escherichia coli containing ω‐transaminase activity in LentiKats®

From

Autonomous University of Barcelona1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

Whole Escherichia coli cells overexpressing ω‐transaminase (ω‐TA) and immobilized cells entrapped in LentiKats® were used as biocatalysts in the asymmetric synthesis of the aromatic chiral amines 1‐phenylethylamine (PEA) and 3‐amino‐1‐phenylbutane (APB). Whole cells were permeabilized with different concentrations of cetrimonium bromide (CTAB) and ethanol; the best results were obtained with CTAB 0.1% which resulted in an increase in reωaction rate by 40% compared to the whole cells.

The synthesis of PEA was carried out using isopropyl amine (IPA) and L‐alanine (Ala) as amino donors. Using whole cell biocatalysis, the reaction with IPA was one order of magnitude faster than with Ala. No reaction was detected when permeabilized E. coli cells containing ω‐TA were employed using Ala as the amino donor.

Additionally, the synthesis of APB from 4‐phenyl‐2‐butanone and IPA was studied. Whole and permeabilized cells containing ω‐TA and their immobilized LentiKats® counterparts showed similar initial reactions rates and yields in the reaction systems, indicating 100% of immobilization efficiency (observed activity/activity immobilized) and absence of diffusional limitations (due to the immobilization).

Immobilization of whole and permeabilized cells containing ω‐TA in LentiKats® allowed improved stability as the biocatalyst was shown to be efficiently reused for five reaction cycles, retaining around 80% of original activity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012

Language: English
Publisher: Wiley Subscription Services, Inc., A Wiley Company
Year: 2012
Pages: 693-698
ISSN: 15206033 and 87567938
Types: Journal article
DOI: 10.1002/btpr.1538
ORCIDs: Woodley, John M.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis