About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Lattice stretching bistability and dynamic heterogeneity

From

Department of Physics, Technical University of Denmark1

Department of Informatics and Mathematical Modeling, Technical University of Denmark2

Russian Academy of Sciences3

Bogolyubov Institute for Theoretical Physics4

A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second-neighbor coupling.

Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least within a certain part of the chain.

As a result, different conformational changes occur in the chain under the external forcing. The transition regions between these conformations are described as topological solitons. With a strong second-neighbor interaction, the solitons describe the transition between the bistable ground states. However, the key point of the model is the appearance of a heterogenous structure, when the second-neighbor coupling is sufficiently weak.

In this case, a part of the chain has short bonds with a single-well potential, whereas the complementary part admits strongly stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail.

Language: English
Year: 2012
Pages: 046601
ISSN: 15502376 , 15393755 , 24700053 and 24700045
Types: Journal article and Preprint article
DOI: 10.1103/PhysRevE.85.046601
ORCIDs: Christiansen, Peter Leth

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis