About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL

From

Quantum and Laser Photonics, Department of Photonics Engineering, Technical University of Denmark1

Department of Photonics Engineering, Technical University of Denmark2

A widely-tunable single-mode 1.3 μm vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning efficiency of 0.203 are predicted.

The large tuning range and efficiency are attributed to the incorporation of the tuning air gap as part of the optical cavity and to the use of a short cavity structure. The short cavity length can be achieved by employing a HCG design of which the reflection mechanism does not rely on resonant coupling.

The absence of resonance coupling leads to a 0.59 λ-thick penetration depth of the HCG and enables to use a 0.25 λ-thick tuning air gap underneath the HCG. This considerably reduces the effective cavity length, leading to larger tuning range and efficiency. The basic properties of this new structure are analyzed, and shown to be explained by analytical expressions that are derived in the paper.

In this context, the penetration depth of the HCG is introduced and shown to be an important characteristic length scale. Throughout the tuning wavelength range, strong single mode operation was maintained and uniform output power is expected.

Language: English
Publisher: IEEE
Year: 2010
Pages: 1245-1253
ISSN: 15581713 and 00189197
Types: Journal article
DOI: 10.1109/JQE.2010.2047494
ORCIDs: Chung, Il-Sug and Mørk, Jesper

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis