About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics

From

Ecosystems, Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Biomass Gasification, Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR).

After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar.

This labile fraction possibly supported the higher CO2 emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 μm), and BET surface areas (0.6 and 1.6 m2 g−1) of the SP- and FP-biochars, respectively.

The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N.

Language: English
Year: 2012
Pages: 73-79
ISSN: 18793428 and 00380717
Types: Journal article
DOI: 10.1016/j.soilbio.2011.11.019

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis