About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper ยท Journal article

The total quasi-steady-state approximation for complex enzyme reactions

From

Department of Mathematics, Technical University of Denmark1

Biochemistry in general and enzyme kinetics in particular have been heavily influenced by the model of biochemical reactions known as Michaelis-Menten kinetics. Assuming that the complex concentration is approximately constant after a short transient phase leads to the usual Michaelis-Menten (MM) approximation (or standard quasi-steady-state approximation (sQSSA)), which is valid when the enzyme concentration is sufficiently small.

This condition is usually fulfilled for in vitro experiments, but often breaks down in vivo. The total QSSA (tQSSA), which is valid for a broader range of parameters covering both high and low enzyme concentrations, has been introduced in the last two decades. We extend the tQSSA to more complex reaction schemes, like fully competitive reactions, double phosphorylation, Goldbeter-Koshland switch and we show that for a very large range of parameters our tQSSA provides excellent fitting to the solutions of the full system, better than the sQSSA and the single reaction tQSSA.

Finally, we discuss the need for a correct model formulation when doing "reverse engineering". which aims at finding unknown parameters by fitting the model to experimentally obtained data. We show that the estimated parameters are much closer to the real values when using the tQSSA rather than the sQSSA, which overestimates the parameter values greatly.

Language: English
Year: 2008
Pages: 1010-1019
Proceedings: 5th Vienna International Conference on Mathematical Modelling
ISSN: 18727166 and 03784754
Types: Conference paper and Journal article
DOI: 10.1016/j.matcom.2008.02.009

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis