About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Abolition of reflex bradycardia by cardiac vagotomy has no effect on the regulation of oxygen uptake by Atlantic cod in progressive hypoxia

From

National Institute of Aquatic Resources, Technical University of Denmark1

Section for Aquaculture, National Institute of Aquatic Resources, Technical University of Denmark2

University of Birmingham3

Aarhus University4

The functional significance of chemoreflexive hypoxic bradycardia was explored in Atlantic cod Gadus morhua L. (mean mass similar to 800 g, acclimated to a seawater temperature of 11 degrees C) by investigating responses to progressive hypoxia following section of the cardiac branches of cranial nerve X Cardiac denervation had no effect on oxygen uptake rate (M-O2), gill ventilation rate (f(G)) or opercular pressure amplitude (P-OP) under normoxic conditions, but caused a significant increase in heart rate (f(H)), to 50 +/- 1 beats min(-1) by comparison to 40 +/- 2 beats min(-1) in sham-operated cod (mean +/- s.e.m., n=9).

Sham-operated cod exhibited transient profound bradycardia following oxygen chemoreceptor stimulation by bolus injection of sodium cyanide into the buccal cavity (2 mg in 2 ml seawater), but this cardiac chemoreflex was abolished in denervated cod. Both groups, however, exhibited similar marked transient chemoreflexive hyperventilation following NaCN.

When exposed from normoxia (PO2 similar to 18 kPa) to progressive hypoxia at nominal water PO2'S of 8, 6, 5, 4 and 3 kPa, both groups exhibited the same pattern of homeostatic regulation of M-O2, with no significant difference in their mean critical PO2 (P-crit) values, which were 7.40 +/- 0.81 kPa and 8.73 +/- 0.71 kPa, respectively (n=9).

Both groups exhibited significant bradycardia during progressive hypoxia, although denervated fish always had higher mean f(H). The incipient threshold for bradycardia coincided with P-crit in sham-operated cod whereas, in denervates, the threshold was below their P-crit and bradycardia presumably reflected direct effects of hypoxia on the myocardium.

The sham-operated group displayed a significantly more pronounced ventilatory response than denervates in hypoxia, in particular for P-OP. In sham-operated cod, peak ventilatory responses occurred in deep hypoxia below P-crit whereas, in denervates, more modest peak responses coincided with Pit and, in deep hypoxia, they exhibited a significant decline in f(G) below their normoxic rate.

Only a minority of shams lost equilibrium in hypoxia whereas a majority of denervates did, some of which failed to recover. The results indicate that chemoreflexive bradycardia plays no role in the homeostatic regulation of oxygen uptake by cod in hypoxia, but does contribute to maintenance of overall functional integrity below P-crit.

Language: English
Year: 2009
Pages: 332-338
ISSN: 15314332 and 10956433
Types: Journal article
DOI: 10.1016/j.cbpa.2009.03.009
ORCIDs: 0000-0002-4477-8039 and Skov, Peter Vilhelm

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis