About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K

From

Center for Energy Resources Engineering, Centers, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

CERE – Center for Energy Ressources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

Mines Paris - PSL4

New vapor–liquid–liquid equilibrium (VLLE) data for methanethiol (CH3SH) + methane (CH4) + water (H2O) have been obtained at three temperatures (304, 334, and 364 K) and pressures up to 9 MPa. A “static-analytical” method was used to perform all of the measurements. The objective was to provide experimental VLLE data for CH3SH with other natural gas contents at its crude form for which limited or no data are available in the open literature.

Such kinds of data are required for the industrial modeling of sulfur emissions. It is observed from the experimental data that the solubility of CH4 in the aqueous and organic phases increases with an increase of the total system pressure and decreases with an increase of the temperature. However, the solubility of CH3SH in the aqueous and organic phases decreases slightly with an increase of the total system pressure and increases significantly with an increase of the temperature.

The new VLLE data of this ternary system were compared with predictions of the cubic-plus-association equation of state. The model tends to underpredict the concentration of CH3SH in all phases, particularly the vapor phase.

Language: English
Publisher: American Chemical Society (ACS)
Year: 2012
Pages: 11561-11564
ISSN: 15205045 and 08885885
Types: Journal article
DOI: 10.1021/ie300888d
ORCIDs: Kontogeorgis, Georgios

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis