About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

From lidar scans to roughness maps for wind resource modelling in forested areas

From

Department of Wind Energy, Technical University of Denmark1

Resource Assessment Modelling, Department of Wind Energy, Technical University of Denmark2

Aarhus University3

Uppsala University4

Meteorology & Remote Sensing, Department of Wind Energy, Technical University of Denmark5

Applying erroneous roughness lengths can have a large impact on the estimated performance of wind turbines, particularly in forested areas. In this study, a new method called the objective roughness approach (ORA), which converts tree height maps created using airborne lidar scans to roughness maps suitable for wind modelling, is evaluated via cross predictions among different anemometers at a complex forested site with seven tall meteorological masts using the Wind Atlas Analysis and Application Program (WAsP).

The cross predictions were made using ORA maps created at four spatial resolutions and from four freely available roughness maps based on land use classifications. The validation showed that the use of ORA maps resulted in a closer agreement with observational data for all investigated resolutions compared to the land use maps.

Further, when using the ORA maps, the risk of making large errors (> 25 %) in predicted power density was reduced by 40–50 % compared to satellite-based products with the same resolution. The results could be further improved for high-resolution ORA maps by adding the displacement height. The improvements when using the ORA maps were both due to a higher roughness length and due to the higher resolution.

Language: English
Publisher: Copernicus Publications
Year: 2018
Pages: 353-370
ISSN: 23667443 and 23667451
Types: Journal article
DOI: 10.5194/wes-3-353-2018
ORCIDs: Floors, Rogier Ralph , Davis, Neil , Dellwik, Ebba and 0000-0002-5443-3173

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis