About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Cost-effective multiplexing before capture allows screening of 25 000 clinically relevant SNPs in childhood acute lymphoblastic leukemia

In Leukemia 2011, Volume 25, Issue 6, pp. 1001-1006
From

Department of Systems Biology, Technical University of Denmark1

Copenhagen University Hospital Herlev and Gentofte2

Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark3

University of Copenhagen4

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark5

CFB - Metagenomic Systems Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark6

Genetic variants, including single-nucleotide polymorphisms (SNPs), are key determiners of interindividual differences in treatment efficacy and toxicity in childhood acute lymphoblastic leukemia (ALL). Although up to 13 chemotherapeutic agents are used in the treatment of this cancer, it remains a model disease for exploring the impact of genetic variation due to well-characterized cytogenetics, drug response pathways and precise monitoring of minimal residual disease.

Here, we have selected clinically relevant genes and SNPs through literature screening, and on the basis of associations with key pathways, protein-protein interactions or downstream partners that have a role in drug disposition and treatment efficacy in childhood ALL. This allows exploration of pathways, where one of several genetic variants may lead to similar clinical phenotypes through related molecular mechanisms.

We have designed a cost-effective, high-throughput capture assay of â¼25â000 clinically relevant SNPs, and demonstrated that multiple samples can be tagged and pooled before genome capture in targeted enrichment with a sufficient sequencing depth for genotyping. This multiplexed, targeted sequencing method allows exploration of the impact of pharmacogenetics on efficacy and toxicity in childhood ALL treatment, which will be of importance for personalized chemotherapy.Leukemia advance online publication, 18 March 2011; doi:10.1038/leu.2011.32.

Language: English
Publisher: Nature Publishing Group UK
Year: 2011
Pages: 1001-1006
ISSN: 14765551 and 08876924
Types: Journal article
DOI: 10.1038/leu.2011.32
ORCIDs: 0000-0003-0316-5866 , 0000-0003-2762-1002 and Gupta, Ramneek

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis