About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Möbius semiconductor nanostructures and deformation potential strain effects

From

Department of Photonics Engineering, Technical University of Denmark1

Geometry, Department of Mathematics, Technical University of Denmark2

Department of Mathematics, Technical University of Denmark3

A discussion of Möbius nanostructures is presented with focus on (1) the accuracy of the approximate differential-geometry formalism by Gravesen and Willatzen and (2) to assess the influence of bending-induced strain on Schrödinger equation eigenstates in semiconductor Möbius structures. The differential-geometry model assumed complete confinement of a quantum-mechanical particle to a zero-thickness Möbius structure where the shape was computed based on minimization of elastic bending energy only and imposing the relevant boundary conditions.

In the latter work, while bending was accounted for in finding the shape of the Möbius structure it was, for simplicity, neglected altogether in determining the direct strain influence on electronic eigenstates. However, as is well-known, deformation-potential strain effects In many semiconductor materials can lead to important changes in not only the energy levels but, perhaps more so, the symmetry of the associated eigenstates and, henceforth, optical and electronic properties.

In this, work we investigate finite-thickness effects of different-sized Möbius structures as well as deformation-potential hydrostatic strain implications using the Finite Element Model commercial software COMSOL. The paper contains a detailed comparison of general Finite Element Model results with the differentialgeometry method.

Copyright © 2011 American Scientific Publishers All rights reserved.

Language: English
Year: 2011
Pages: 68-75
ISSN: 15551318 and 1555130x
Types: Journal article
DOI: 10.1166/jno.2011.1135
ORCIDs: Gravesen, Jens

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis