About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Individual-level trait diversity predicts phytoplankton community properties better than species richness or evenness

From

Dübendorf1

Birmensdorf2

Bucharest3

Zürich4

Understanding how microbial diversity influences ecosystem properties is of paramount importance. Cellular traits—which determine responses to the abiotic and biotic environment—may help us rigorously link them. However, our capacity to measure traits in natural communities has thus far been limited.

Here we compared the predictive power of trait richness (trait space coverage), evenness (regularity in trait distribution) and divergence (prevalence of extreme phenotypes) derived from individual-based measurements with two species-level metrics (taxonomic richness and evenness) when modelling the productivity of natural phytoplankton communities.

Using phytoplankton data obtained from 28 lakes sampled at different spatial and temporal scales, we found that the diversity in individual-level morphophysiological traits strongly improved our ability to predict community resource-use and biomass yield. Trait evenness—the regularity in distribution of individual cells/colonies within the trait space—was the strongest predictor, exhibiting a robust negative relationship across scales.

Our study suggests that quantifying individual microbial phenotypes in trait space may help us understand how to link physiology to ecosystem-scale processes. Elucidating the mechanisms scaling individual-level trait variation to microbial community dynamics could there improve our ability to forecast changes in ecosystem properties across environmental gradients.

Language: Undetermined
Publisher: Nature Publishing Group
Year: 2018
Pages: 356-366
Journal subtitle: Multidisciplinary Journal of Microbial Ecology
ISSN: 17517370 and 17517362
Types: Journal article
DOI: 10.1038/ismej.2017.160

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis