About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

DNA analysis by single molecule stretching in nanofluidic biochips

From

TEKNIKER1

NSE-Optofluidics Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark3

Department of Micro- and Nanotechnology, Technical University of Denmark4

Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput NanoImprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover.

Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter.

The determination of the extension ratio of the chip provides a method to determining DNA size. The results of this work prove that the developed fabrication process is a good alternative for the fabrication of single molecule DNA biochips and it allows developing a variety of innovative bio/chemical sensors based on single-molecule DNA sequencing devices.

Language: English
Year: 2011
Pages: 300-304
ISSN: 18735568 and 01679317
Types: Journal article
DOI: 10.1016/j.mee.2010.11.025
ORCIDs: Marie, Rodolphe and Kristensen, Anders

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis