About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Preprint article · Journal article

A Lyαblob andzabs ≈ zemdamped Lyαabsorber in the dark matter halo of the binary quasar Q 0151+048

From

DARK, Niels Bohr Institute, Faculty of Science, Københavns Universitet

Q0151+048 is a physical QSO pair at z ~ 1.929 with a separation of 3.3 arcsec on the sky. In the spectrum of Q0151+048A (qA), a DLA is observed at a higher redshift. We have previously detected the host galaxies of both QSOs, as well as a Lya blob. We performed low-resolution spectroscopy with the slit aligned with the extended emission.

We also observed the system using the medium-resolution VLT/X-shooter spectrograph and the slit aligned with the two QSOs. We measure systemic redshifts of zem(A)=1.92924{\pm}0.00036 and zem(B)=1.92863{\pm}0.00042 from the H{\beta} and H{\alpha} emission lines, respectively. We estimate the masses of the black holes of the two QSOs to be 10^9.33 M{\odot} and 10^8.38 M{\odot} for qA and qB, respectively.

From this we infered the mass of the dark matter halos hosting the two QSOs: 10^13.74 M{\odot} and 10^13.13 M{\odot} for qA and qB, respectively. We observe a velocity gradient along the major axis of the Lya blob consistent with the rotation curve of a large disk galaxy, but it may also be caused by gas inflow or outflow.

We detect residual continuum in the DLA trough which we interpret as emission from the host galaxy of qA. The derived H0 column density of the DLA is log NH0 = 20.34 {\pm} 0.02. Metal column densities results in an overall metallicity of 0.01 Z{\odot}. We detect CII* which allows us to make a physical model of the DLA cloud.

From the systemic redshifts of the QSOs, we conclude that the Lya blob is associated with qA rather than with the DLA. The DLA must be located in front of both the Lya blob and qA at a distance larger than 30 kpc. The two QSOs accrete at normal eddington ratios. The DM halo of this double quasar will grow to the mass of our local super-cluster at z=0.

We point out that those objects therefore form an ideal laboratory to study the physical interactions in a z=2 pre-cursor of our local super-cluster.

Language: Undetermined
Publisher: EDP Sciences
Year: 2011
Pages: A51
ISSN: 14320746 and 00046361
Types: Preprint article and Journal article
DOI: 10.1051/0004-6361/201016332
ORCIDs: Fynbo, J. P. U. and Milvang-Jensen, B.
Keywords

astro-ph.CO

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis