About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Preprint article · Journal article

NICER and Fermi GBM Observations of the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124

From

NASA Marshall Space Flight Center1

University of Southampton2

University of Arizona3

European Space Astronomy Centre4

Praxis, Inc.5

University of Alabama in Huntsville6

National Space Institute, Technical University of Denmark7

Astrophysics and Atmospheric Physics, National Space Institute, Technical University of Denmark8

U.S. Naval Research Laboratory9

NASA Goddard Space Flight Center10

Massachusetts Institute of Technology11

Noqsi Aerospace Ltd.12

CNRS13

...and 3 more

Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late 2017 September in a giant outburst with a peak luminosity of 2  ×  1039(d/7 kpc)2 erg s−1 (0.1–10 keV), with no formerly reported activity. At this luminosity, Swift J0243.6+6124 is the first known galactic ultraluminous X-ray pulsar.

We describe Neutron star Interior Composition Explorer (NICER) and Fermi Gamma-ray Burst Monitor (GBM) timing and spectral analyses for this source. A new orbital ephemeris is obtained for the binary system using spin frequencies measured with GBM and 15–50 keV fluxes measured with the Neil Gehrels Swift Observatory Burst Alert Telescope to model the system's intrinsic spin-up.

Power spectra measured with NICER show considerable evolution with luminosity, including a quasi-periodic oscillation near 50 mHz that is omnipresent at low luminosity and has an evolving central frequency. Pulse profiles measured over the combined 0.2–100 keV range show complex evolution that is both luminosity and energy dependent.

Near the critical luminosity of L ~ 1038 erg s−1, the pulse profiles transition from single peaked to double peaked, the pulsed fraction reaches a minimum in all energy bands, and the hardness ratios in both NICER and GBM show a turnover to softening as the intensity increases. This behavior repeats as the outburst rises and fades, indicating two distinct accretion regimes.

These two regimes are suggestive of the accretion structure on the neutron star surface transitioning from a Coulomb collisional stopping mechanism at lower luminosities to a radiation-dominated stopping mechanism at higher luminosities. This is the highest observed (to date) value of the critical luminosity, suggesting a magnetic field of B ~ 1013 G

Language: English
Year: 2018
Pages: 9
ISSN: 15384365 , 00670049 , 0004637x and 15384357
Types: Preprint article and Journal article
DOI: 10.3847/1538-4357/aace60
ORCIDs: Jaisawal, Gaurava Kumar , 0000-0002-8585-0084 , 0000-0002-0893-4073 , 0000-0002-4013-5650 , 0000-0001-8804-8946 , 0000-0002-6449-106X , 0000-0002-6089-6836 , 0000-0001-9803-3879 , 0000-0002-5297-5278 , 0000-0003-4815-0481 and 0000-0001-7681-5845
Other keywords

astro-ph.HE

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis