About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803

From

Polytechnic University of Valencia1

Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark2

Department of Systems Biology, Technical University of Denmark3

University of Málaga4

European Molecular Biology Laboratory5

Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO2 as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome-scale metabolic model is a pre-requisite toward achieving a proficient photosynthetic cell factory.

To this end, we report iSyn811, an upgraded genome-scale metabolic model of Synechocystis sp. PCC6803 consisting of 956 reactions and accounting for 811 genes. To gain insights into the interplay between flux activities and metabolic physiology, flux coupling analysis was performed for iSyn811 under four different growth conditions, viz., autotrophy, mixotrophy, heterotrophy, and light-activated heterotrophy (LH).

Initial steps of carbon acquisition and catabolism formed the versatile center of the flux coupling networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light.

Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production platform. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Language: English
Year: 2011
Pages: 330-342
ISSN: 18607314 and 18606768
Types: Journal article
DOI: 10.1002/biot.201000109

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis