About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Preprint article · Journal article

Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities

From

Department of Physics, Technical University of Denmark1

Biophysics and Fluids, Department of Physics, Technical University of Denmark2

The acoustic fields and streaming in a confined fluid depend strongly on the acoustic boundary layer forming near the wall. The width of this layer is typically much smaller than the bulk length scale set by the geometry or the acoustic wavelength, which makes direct numerical simulations challenging.

Based on this separation in length scales, we extend the classical theory of pressure acoustics by deriving a boundary condition for the acoustic pressure that takes boundary-layer effects fully into account. Using the same length-scale separation for the steady second-order streaming, and combining it with time-averaged short-range products of first-order fields, we replace the usual limiting-velocity theory with an analytical slip-velocity condition on the long-range streaming field at the wall.

The derived boundary conditions are valid for oscillating cavities of arbitrary shape and wall motion as long as the wall curvature and displacement amplitude are both sufficiently small. Finally, we validate our theory by comparison with direct numerical simulation in two examples of two-dimensional water-filled cavities: The well-studied rectangular cavity with prescribed wall actuation, and the more generic elliptical cavity embedded in an externally actuated rectangular elastic glass block.

Language: English
Publisher: Acoustical Society of America
Year: 2018
Pages: 766-784
ISSN: 00014966 , 15208524 and 01630962
Types: Preprint article and Journal article
DOI: 10.1121/1.5049579
ORCIDs: Bruus, Henrik
Keywords

physics.flu-dyn

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis