About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine's power performance

In Renewable Energy 2020, Volume 145, pp. 419-427
From

Nanjing University of Aeronautics and Astronautics1

Fluid Mechanics, Department of Wind Energy, Technical University of Denmark2

Department of Wind Energy, Technical University of Denmark3

The power generated by a wind turbine largely depends on the properties of wind resource. In this work, wind characteristics in different regimes occurring throughout the idealized diurnal cycle and its impact on wind turbine's power performance are investigated systematically by means of large-eddy simulation (LES), and blade element momentum method (BEM), respectively.

Through a precursor simulation of the atmospheric boundary layer (ABL) over a homogenous surface throughout a day, it is found that the resulting shapes of wind profiles (including wind speed, wind direction and turbulence level) vary significantly at different time periods, induced by distinct stabilities of the atmosphere.

The simulated wind field data are then applied to a NREL 5 MW wind turbine for its power evaluation. Due to variabilities in wind shear and turbulence, the equivalent (disk-averaged) wind speed is introduced for power prediction. It is found that the magnitude and fluctuation of turbine's diurnal power are closely related to the atmospheric stability.

In general, the average power production is higher under convective conditions during the day than under stable conditions at night, with a difference approaching 24.4%. This indicates that wind energy resource assessment will close to reality and benefit from increased accuracy if atmospheric stability impacts are considered for turbine's power predictions.

Language: English
Year: 2020
Pages: 419-427
ISSN: 18790682 and 09601481
Types: Journal article
DOI: 10.1016/j.renene.2019.05.038
ORCIDs: Shen, Wen Zhong

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis