About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

High‐order numerical simulations of flow‐induced noise

From

Fluid Mechanics, Department of Mechanical Engineering, Technical University of Denmark1

Department of Mechanical Engineering, Technical University of Denmark2

In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D.

The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration.

To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil.

Copyright © 2010 John Wiley & Sons, Ltd.

Language: English
Publisher: John Wiley & Sons, Ltd.
Year: 2011
Pages: 17-37
ISSN: 10970363 and 02712091
Types: Journal article
DOI: 10.1002/fld.2241
ORCIDs: Shen, Wen Zhong and Sørensen, Jens Nørkær

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis