About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Relativistic runaway breakdown in low-frequency radio : RUNAWAY BREAKDOWN

From

University of Bath1

SciTech Solutions Ltd2

Los Alamos National Laboratory3

Solar System Physics, National Space Institute, Technical University of Denmark4

National Space Institute, Technical University of Denmark5

University of Leicester6

Polytechnic University of Catalonia7

The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from similar to 10 to 300 kHz at a distance of similar to 800 km.

Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave.

Two consecutive pulses occur similar to 4.5 ms and similar to 3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites.

The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

Language: English
Year: 2011
Pages: n/a-n/a
ISSN: 21562202 , 01480227 and 21699380
Types: Journal article
DOI: 10.1029/2009JA014468
ORCIDs: Chanrion, Olivier Arnaud and Neubert, Torsten

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis