About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Influence of processing and intrinsic polymer parameters on photochemical stability of polythiophene thin films

From

Department of Energy Conversion and Storage, Technical University of Denmark1

Functional organic materials, Department of Energy Conversion and Storage, Technical University of Denmark2

Imaging and Structural Analysis, Department of Energy Conversion and Storage, Technical University of Denmark3

Intrinsic polymer parameters such as regio-regularity, molecular weight, and crystallinity play an important role when studying polymer stability. 18 different batches of poly-3-hexyl-thiophene (P3HT) were degraded in a solar simulator (AM1.5G, 1000 W/m2) and the degradation kinetics were monitored.

The results suggest that the radical reaction responsible for the photodegradation takes place at terminal thiophene rings exposed at points were the conjugation is broken. This proposed mechanism is supported by the fact that stability scales with regio-regularity following the ratio of head-to-tail connected thiophene units.

Annealing was found to relax the P3HT films and increase conjugation length and, in turn, increase stability observed as a delayed spectral blueshift caused by photochemical degradation. Crystallinity was found to play a minor role in terms of stability. Oxygen diffusion and light shielding effects were shown to have a negligible effect on the photochemical degradation rate.

The results obtained in this work advance the understanding of polymer stability and will help improve the design of materials used for polymer solar cells resulting in longer lifetimes, which will push the technology closer to large-scale applications. © 2012 Elsevier Ltd. All rights reserved.

Language: English
Year: 2012
Pages: 2412-2417
ISSN: 18732321 and 01413910
Types: Journal article
DOI: 10.1016/j.polymdegradstab.2012.07.021
ORCIDs: Vesterager Madsen, Morten , Andreasen, Jens Wenzel , Norrman, Kion and Krebs, Frederik C

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis