About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Modelling the elastic properties of cellulose nanopaper

From

Queen Mary University of London1

Department of Wind Energy, Technical University of Denmark2

Composites Mechanics and Materials Mechanics, Department of Wind Energy, Technical University of Denmark3

Donghua University4

The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network revealed both tensile and compressive stresses during elastic deformation of the model.

The length, diameter, waviness and elastic modulus of the cellulose nanofibres were varied in the model and their effect on the elastic modulus of fibrous networks was studied. It was found that high values of elastic moduli of cellulose networks could be obtained for long, thin and straight nanofibres of high stiffness.

The effect of inter-fibre bonding and network density was also investigated. Increasing fibre-fibre interactions facilitated stress transfer in cellulose networks and led to a higher elastic modulus of the nanopaper. Denser networks also resulted in a higher elastic modulus due to an increasing number of nanofibres and inter-fibre bonds.

Language: English
Year: 2017
Pages: 183-189
ISSN: 18734197 and 02641275
Types: Journal article
DOI: 10.1016/j.matdes.2017.04.050

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis