About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy

From

Department of Micro- and Nanotechnology, Technical University of Denmark1

Self-Organized Nanoporous Materials, Department of Micro- and Nanotechnology, Technical University of Denmark2

Nanoprobes, Department of Micro- and Nanotechnology, Technical University of Denmark3

Center for Nanostructured Graphene, Centers, Technical University of Denmark4

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark5

We report a novel nanofabrication process via block copolymer lithography using solvent vapor annealing. The nanolithography process is facile and scalable, enabling fabrication of highly ordered periodic patterns over entire wafers as substrates for surface-enhanced Raman spectroscopy (SERS). Direct silicon etching with high aspect ratio templated by the block copolymer mask is realized without any intermediate layer or external precursors.

Uniquely, an atomic layer deposition (ALD)-assisted method is introduced to allow reversing of the morphology relative to the initial pattern. As a result, highly ordered silicon nanopillar arrays are fabricated with controlled aspect ratios. After metallization, the resulting nanopillar arrays are suitable for SERS applications.

These structures readily exhibit an average SERS enhancement factor of above 108, SERS uniformities of 8.5% relative standard deviation across 4 cm, and 6.5% relative standard deviation over 5 × 5 mm2 surface area, as well as a very low SERS background. The as-prepared SERS substrate, with a good enhancement and large-area uniformity, is promising for practical SERS sensing applications.

Language: English
Year: 2016
Pages: 15668-75
ISSN: 19448252 and 19448244
Types: Journal article
DOI: 10.1021/acsami.6b05431
ORCIDs: Wu, Kaiyu , Rindzevicius, Tomas , Boisen, Anja and Ndoni, Sokol

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis