About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The marine diversity spectrum

Edited by Webb, Tom

From

Imperial College London1

National Institute of Aquatic Resources, Technical University of Denmark2

Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark3

Cefas Weymouth Laboratory4

European Commission Joint Research Centre Institute5

Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes.

We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns.

The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center dot 5 and -0 center dot 1.

Slopes of -0 center dot 5 and -0 center dot 1 represent markedly different communities: a slope of -0 center dot 5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0 center dot 1 depicts a 1 center dot 6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions.

Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on body mass, and a neutral assumption about speciation and extinction.

Language: English
Publisher: BlackWell Publishing Ltd
Year: 2014
Pages: 963-979
ISSN: 13652656 and 00218790
Types: Journal article
DOI: 10.1111/1365-2656.12194
ORCIDs: Gislason, Henrik

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis