About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine

From

Theoretical Nanoelectronics Group, Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange and correlation in a many-body Hamiltonian, and it leads to easy-to-evaluate corrections to the DFT eigenvalues.

Self-interaction is largely corrected, so that the modified energy levels do not suffer from spurious crossings, as often encountered for CuPc in DFT, and they remedy the standard underestimation of the gap. As a specific example we study the sequence and position of the CuPc molecular orbitals, which are wrongly calculated by standard DFT, and show that they are correctly reproduced after our corrections are included.

The suggested method is fast and simple and, while not as accurate as hybrid or semiempirical functionals for molecular levels, it can be easily applied to any local-orbital DFT approach, improving on several important limitations of standard DFT methods.

Language: English
Publisher: Springer Berlin Heidelberg
Year: 2009
Pages: 257-263
Journal subtitle: Materials Science and Processing
ISSN: 14320630 and 09478396
Types: Journal article
DOI: 10.1007/s00339-008-5022-0
ORCIDs: Brandbyge, Mads and Jauho, Antti-Pekka

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis