About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

High-pressure experimental vapour-liquid-liquid equilibrium measurements and modelling for natural gas processing: Equipment validation, and the system CH4+nC6H14+H2O

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Center for Energy Resources Engineering, Centers, Technical University of Denmark2

CERE – Center for Energy Ressources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

KT Consortium, Department of Chemical and Biochemical Engineering, Technical University of Denmark4

Despite its relevance for oil and gas separation processes, surprisingly few experimental three-phase data are available in the open literature for gas-condensate-water systems. In support of proposed subsea processing facilities, a three-phase equilibrium measurement apparatus has been recommissioned for the measurement of C1+nC6+H2O systems between 303 and 323 K.

The apparatus has been validated by comparison with literature VLE data for C1+H2O and C1+nC6, with the experimental uncertainty estimated at ± 9% (95% confidence interval). 81 new three-phase C1+nC6+H2O data points have been generated for three different feed mixtures. The relative compositions in each phase are strongly correlated to the experimental feed composition, while the solubility-temperature trends indicate complex interactions in the system.

The repeatability of the measurements ranges from below 1% for major components up to 10–20% for trace components in the respective phases. Experimental standard deviations are comparable with those reported for literature data. The data have been modelled using the CPA and sPC-SAFT equations of state.

Satisfactory results were achieved for major components (accuracy between 1 and 6%), while order of magnitude errors were observed for certain trace components (e.g. water in the HC-rich phase). Overall, sPC-SAFT provided slightly better predictions compared to the CPA, but the differences are rather modest.

Language: English
Year: 2019
Pages: 112276
ISSN: 18790224 and 03783812
Types: Journal article
DOI: 10.1016/j.fluid.2019.112276
ORCIDs: Kruger, Francois , Kontogeorgis, Georgios M. and von Solms, Nicolas

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis