About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assembly

In Nanoscale 2018, Volume 10, Issue 44, pp. 20652-20663
From

Department of Micro- and Nanotechnology, Technical University of Denmark1

Nanoprobes, Department of Micro- and Nanotechnology, Technical University of Denmark2

National Centre for Nano Fabrication and Characterization, Technical University of Denmark3

Self-Organized Nanoporous Materials, Department of Micro- and Nanotechnology, Technical University of Denmark4

Polytechnic University of Bari5

National Research Council of Italy6

University of Southern Denmark7

Polymer Micro & Nano Engineering, Department of Micro- and Nanotechnology, Technical University of Denmark8

Adding roughness to hydrophilic surfaces is generally expected to enhance their wetting by water. Indeed, global free energy minimization predicts decreasing contact angles when roughness factor or surface energy increases. However, experimentally it is often found that water spreading on rough surfaces is impeded by pinning effects originating from local free energy minima; an effect, largely neglected in scientific literature.

Here, we utilize Laplace pressure as a proxy for these local minima, and we map the transition to a superwetting state of hydrophilic nano-textured surfaces in terms of surface chemistry and texture geometry. We demonstrate the effect for polymer model surfaces templated from block-copolymer self-assembly comprising dense, nano-pillar arrays exhibiting strong pinning in their pristine state.

By timed argon plasma exposure, we tune surface chemistry to map the transition into the superwetting state of low contact angle, which we show coincide with the surface supporting hemiwicking flow. For the near-ideal model surfaces, the transition to the superwetting state occurs below a critical material contact angle of ∼50°.

We show that superwetting surfaces possess anti-fogging properties, and demonstrate long term stability of the superwetting effect by coating the nanotextured surfaces with ∼10 nm thin films of either tungsten or silica.

Language: English
Year: 2018
Pages: 20652-20663
ISSN: 20403372 and 20403364
Types: Journal article
DOI: 10.1039/c8nr07941b
ORCIDs: Mandsberg, Nikolaj Kofoed , Ludvigsen, Emil , Ndoni, Sokol , 0000-0002-7972-9819 , Taboryski, Rafael and Telecka, Agnieszka

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis