About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

From

Department of Photonics Engineering, Technical University of Denmark1

Diode Lasers and LED Systems, Department of Photonics Engineering, Technical University of Denmark2

Ludwig Maximilian University of Munich3

Medical University of Vienna4

Optical Sensor Technology, Department of Photonics Engineering, Technical University of Denmark5

Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers, enable acquisition of densely sampled three-dimensional datasets covering a wide field of view.

However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment.

With a moderate SOA current (270 mA) we achieve up to 100nm total sweep range and 12 μm depth resolution in air. By modulating the current, we can optimize the output spectrum and thereby improve the resolution to 9 μm in air (~6.5 μm in tissue). The average output power is higher than 20mW. Both sweep directions show similar performance; hence, both can be used for OCT imaging.

This enables an A-scan rate of 350 kHz without buffering the light source output.

Language: English
Year: 2012
Pages: 82130R-6
Proceedings: SPIE Photonics West : Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI
ISSN: 1996756x and 0277786x
Types: Conference paper
DOI: 10.1117/12.906148
ORCIDs: Pedersen, Christian and Andersen, Peter E.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis