About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Feasibility of non-linear simulation for Field II using an angular spectrum approach

From

Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark1

Department of Electrical Engineering, Technical University of Denmark2

Center for Fast Ultrasound Imaging, Centers, Technical University of Denmark3

Simulation of non-linear fields is most often restricted to single element, circularly symmetric sources, which is not used in clinical scanning. To obtain a general and valuable simulation, array transducers of any geometry with any excitation, focusing, and apodization should be modeled. Field II is restricted to simulate these for the linear case and the purpose of this paper is to develop a general frame work for extending it to non-linear simulation.

The extension to the non-linear domain is made by using the angular spectrum approach (ASA), where the field is calculated in a plane close to the transducer surface. This calculation is performed using Field II and, thus, includes modeling array transducers of any geometry with any excitation, focusing, and apodization.

The propagation in the linear or non-linear medium is then performed using the angular spectrum approach. The first step in deriving this procedure is to find the accuracy of the approach for linear propagation, where the result can be validated using Field II simulations. The ASA calculations are carried out by 3D fast Fourier transform using Matlab, where lambda=2 is chosen as the spatial sampling rate to reduce aliasing errors.

Zero-padding is applied to enlarge the source plane to a (4N - 1) times (4N - 1) matrix to overcome artifacts in terms of the circular convolution. The source plane covering an area of 9 times 9 mm2 with N = 61 samples along both side, is 0.05 mm away from a 5 MHz planar piston transducer, which is simulated by Field II.

To determine the accuracy, different sampling intervals and zero-paddings are compared and the errors are calculated with Field II as a reference. It can be seen that zero-padding with 4N - 1 and lambda=2 sampling can both reduce the errors from 25.7% to 12.9% for the near-field and from 18.1% to 5.8% for the far-field, and improve the price of an increase in computation time.

The angular spectrum approach in combination with Field II opens for- - the possibility of simulating the non-linear acoustic propagation for any kind of array transducers.

Language: English
Publisher: IEEE
Year: 2008
Pages: 1314-1317
Proceedings: 2008 IEEE International Ultrasonics Symposium
Series: I E E E International Ultrasonics Symposium. Proceedings
ISBN: 1424424283 , 9781424424283 , 1424424801 and 9781424424801
ISSN: 15513025 and 10510117
Types: Conference paper
DOI: 10.1109/ULTSYM.2008.0318
ORCIDs: Jensen, Jørgen Arendt

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis