About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper · Journal article

The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

From

Friedrich-Alexander University Erlangen-Nürnberg1

Linköping University2

Department of Photonics Engineering, Technical University of Denmark3

KTH Royal Institute of Technology4

Diode Lasers and LED Systems, Department of Photonics Engineering, Technical University of Denmark5

Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative lifetimes, high nonradiative lifetimes are crucial for efficient light conversion.

Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy.

Defect formation seems to be related to nitrogen incorporation from the growth ambient while nitrogen doping from the source yielded better results regarding quantum efficiency. To investigate the presence of different types of defects in f-SiC layers and their impact on the fluorescent properties of f-SiC, this study will focus on defect characterization of f-SiC layers grown under different process conditions, especially different growth ambient and using differently doped source material.

The results may help to identify critical process parameters and reduce the concentration of relevant defects.

Language: English
Publisher: IOP Publishing
Year: 2013
Pages: 012002
Proceedings: E-MRS 2013 Spring Meeting
Series: I O P Conference Series: Materials Science and Engineering
ISSN: 1757899x and 17578981
Types: Conference paper and Journal article
DOI: 10.1088/1757-899X/56/1/012002
ORCIDs: Ou, Yiyu and Ou, Haiyan

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis