About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

In Proceedings of the International Conference on Wind Energy: Materials, Engineering, and Policies (wemep-2012) — 2012
From

Department of Wind Energy, Technical University of Denmark1

Test and Measurements, Department of Wind Energy, Technical University of Denmark2

A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers.

The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies.

At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Østerild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky.

The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane.

The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles, including turbulence, have been acquired from remote sensing to heights above 1.5 km above the ground.

Language: English
Year: 2012
Proceedings: International Conference on Wind Energy: Materials, Engineering and Policies (WEMEP-2012)
Types: Conference paper
ORCIDs: Mikkelsen, Torben , Sjöholm, Mikael , Angelou, Nikolas and Pedersen, Anders Tegtmeier

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis