About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Book chapter

Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

In Reactive Flows, Diffusion and Transport — 2007, pp. 341-370
From

Dynamical systems, Department of Mathematics, Technical University of Denmark1

Department of Mathematics, Technical University of Denmark2

Heidelberg University 3

Fritz Haber Institute of the Max Planck Society4

Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can be derived rigorously for low-pressure conditions from the microscopic model, which is characterized as a moderately interacting many-particle system, in the limit as the particle number tends to infinity.

Also the mesoscopic model is given by a many-particle system. However, the particles move on a lattice, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena of stochastic origin can be observed in experiments.

The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement with low pressure experiments. Furthermore, for intermediate pressures, noise-induced pattern formation, which has not been captured by earlier models, can be reproduced in stochastic simulations with the mesoscopic model.

Language: English
Publisher: Springer Verlag
Year: 2007
Pages: 341-370
ISBN: 1280866063 , 354028379X , 354028379x , 354028396X , 354028396x , 9781280866067 , 9783540283799 and 9783540283966
Types: Book chapter
DOI: 10.1007/978-3-540-28396-6_13
ORCIDs: Starke, Jens

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis