About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Other

From emission to ecotoxicity: comparative assessment of fate and ecotoxicity in LCA using USEtox

From

Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark1

Department of Management Engineering, Technical University of Denmark2

National Institute of Public Health and the Environment3

University of Michigan, Ann Arbor4

Radboud University Nijmegen5

Interuniversity Research Centre for the Life Cycle of Products, Processes and Services6

University of California at Berkeley7

Swiss Federal Institute of Technology Lausanne8

The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. For life cycle impact assessment, USEtox may be used as a comparative tool for ecosystem and human toxicity. As a characterization model, it covers the entire impact pathway transforming a chemical emission into potential impacts on freshwater ecosystems based on quantitative modeling of fate, exposure and ecotoxicity effects.

Taken together, these are represented as chemical-specific characterization factors (CFs). In the case of freshwater ecotoxicity, impacts are measured as potentially affected or disappeared species [PAF m3-day / kgemitted]. Through analysis of the freshwater CFs of over three thousand organic chemicals, this work provides insight into the chemical properties that most strongly influence freshwater ecosystem toxicity for a variety of emission scenarios.

Furthermore, the analysis addresses the influence of chemical properties along the emission-fate-exposure-impact chain of events. The main trends are identified using results for the entire dataset of chemicals, and typical patterns are illustrated for a small selection of chemicals with characteristic combinations of properties.

For an emission directly to water, the effect factor, which is obtained from laboratory measurements of substance toxicity to different trophic levels, strongly controls toxicity. Multimedia transfer affects the CF for these emissions by less than two orders of magnitude. However, for emission to air or soil, intermedia transfer and degradation may decrease the CF by up to 10 orders of magnitude.

This result shows the importance of the Henry's law constant, the organic carbon and octanol-water partitioning coefficient, the degradation half-life in various media, and the treatment of intermittent rain in the model. The interplay between these parameters and the model, which assumes a typical ratio of water to land surface area, shows that direct air to water transfer is less important for many hydrophilic chemicals than might be suspected.

As a result, for some compounds, second-order transfers, eg., from air to soil to water, are relatively more important. USEtox addresses some of the pressing problems in current life cycle impact assessment of chemical emissions by providing a consensus model that can calculate transparent chemical-specific characterization factors.

Language: English
Year: 2010
Proceedings: SETAC North America 31st Annual Meeting
Types: Other
ORCIDs: 0000-0002-8331-7390

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis