About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Determining Upper Bounds for the Clay-squirt Effect in Clay Bearing Sandstone

From

Department of Civil Engineering, Technical University of Denmark1

Section for Geotechnics and Geology, Department of Civil Engineering, Technical University of Denmark2

Center for Energy Resources Engineering, Centers, Technical University of Denmark3

Sonic measurements of saturated bulk moduli of clay bearing sandstones show larger values than expected by Gassmann modelling from dry rock properties. This causes difficulties in extrapolation of laboratory data to different saturants or frequencies. Squirt flow from the clay phase of the rock have been proposed as the mechanism behind this stiffening.

Low fluid mobility and low bulk modulus of the clay phase cause excess pore-pressures to be induced and retained in the phase leading to stiffening. A quantitative bound is formulated for this effect through the determination of the Hashin-Shtrikman bounds for the case of a drained clay phase and an undrained clay phase.

The bound is achieved by analyzing the influence of the relevant parameters with subsequent grouping using reasonable correlations. Through this approach only the saturated bulk modulus of the quartz phase and the clay fraction remain as free parameters. The bound is calculated for all possible values of these parameters.

Experimentally observed values for non-Gassmann bulk modulus stiffening are found to fall below the bound for all values within the Hashin-Shtrikman bounds. Hereby this study shows that the clay-squirt effect may be the cause of observed stiffening.

Language: English
Year: 2012
Proceedings: 74th EAGE Annual Conference and Exhibition incorporating SPE Europec 2012
Types: Conference paper
ORCIDs: Fabricius, Ida Lykke

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis