About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A nanoelectromechanical tunable laser

The ability to tune the frequency of an oscillator is of critical importance and is a fundamental building block for many systems, be they mechanical or electronic1,2. However, this very important function is still highly inadequate in optical oscillators, particularly in semiconductor laser diodes3,4.

The limitations in tuning a laser frequency (or wavelength) include the tuning range and the speed of tuning, which is typically milliseconds or slower. In addition, the tuning is often not continuous and may require complex synchronization of several electrical control signals. In this Letter, we present a new tunable laser structure with a lightweight nanoelectromechanical mirror based on a single-layer, high-contrast subwavelength grating.

The high-contrast subwavelength grating reflector enables a drastic reduction of the mirror mass, which increases the mechanical resonant frequency and hence tuning speed5. This allows for a wavelength-tunable light source with potential switching speeds of the order of tens of nanoseconds and suggests various new areas of practical application, such as bio- or chemical sensing6,7,8, chip-scale atomic clocks9 and projection displays10,11.

Language: English
Publisher: Nature Publishing Group UK
Year: 2008
Pages: 180-184
ISSN: 17494893 and 17494885
Types: Journal article
DOI: 10.1038/nphoton.2008.3

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis